Catalysis of PAH biodegradation by humic acid shown in synchrotron infrared studies.

نویسندگان

  • Hoi-Ying N Holman
  • Karl Nieman
  • Darwin L Sorensen
  • Charles D Miller
  • Michael C Martin
  • Thomas Borch
  • Wayne R Mckinney
  • Ronald C Sims
چکیده

The role of humic acid (HA) in the biodegradation of toxic polycyclic aromatic hydrocarbons (PAHs) has been the subject of controversy, particularly in unsaturated environments. By utilizing an infrared spectromicroscope and a very bright, nondestructive synchrotron photon source, we monitored in situ and, over time, the influence of HA on the progression of degradation of pyrene (a model PAH) by a bacterial colony on a magnetite surface. Our results indicate that HA dramatically shortens the onset time for PAH biodegradation from 168 to 2 h. In the absence of HA, it takes the bacteria about 168 h to produce sufficient glycolipids to solubilize pyrene and make it bioavailable for biodegradation. These results will have large implications for the bioremediation of contaminated soils.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fate of polycyclic aromatic hydrocarbons during composting of lagooning sewage sludge.

The fate of 16 polycyclic aromatic hydrocarbons (PAHs), targeted by the USEPA agency, has been investigated during composting of lagooning sludge. Composting shows efficient decrease of the content and the bioavailability of each PAH. Biodegradation and sorption are suggested as the main mechanisms contributing to this decrease. During the stabilization phase of composting, extensive microbial ...

متن کامل

Biosurfactant- and biodegradation-enhanced partitioning of polycyclic aromatic hydrocarbons from nonaqueous-phase liquids.

A study was conducted on the effect of two different biological factors, microbial surfactants and biodegradation, on the kinetics of partitioning of polycyclic aromatic hydrocarbons (PAHs) from nonaqueous-phase liquids (NAPLs). The effect of rhamnolipid biosurfactants on partitioning into the aqueous phase of naphthalene, fluorene, phenanthrene, and pyrene, initially dissolved in di-2-ethylhex...

متن کامل

Effects of humic substances and soya lecithin on the aerobic bioremediation of a soil historically contaminated by polycyclic aromatic hydrocarbons (PAHs).

The high hydrophobicity of polycyclic aromatic hydrocarbons (PAHs) strongly reduces their bioavailability in aged contaminated soils, thus limiting their bioremediation. The biodegradation of PAHs in soils can be enhanced by employing surface-active agents. However, chemical surfactants are often recalcitrant and exert toxic effects in the amended soils. The effects of two biogenic materials as...

متن کامل

Increased conformational rigidity of humic substances by oxidative biomimetic catalysis.

A synthetic water-soluble meso-tetra(2,6-dichloro-3-sulfonatophenyl)porphyrinate of iron(III) chloride, Fe(TDCPPS)Cl, was employed as a biomimetic catalyst in the oxidative coupling of terrestrial humic materials. High-performance size-exclusion chromatography (HPSEC), solid-state nuclear magnetic resonance (CPMAS-(13)C NMR), electron paramagnetic resonance (EPR), and diffuse reflectance infrar...

متن کامل

"Humic coverage index" as a determining factor governing strain-specific hydrocarbon availability to contaminant-degrading bacteria in soils.

We report development of a novel parameter for quantifying the amount of humic and fulvic acids per unit surface area in a particular soil. This quantity, the "humic coverage index" (HCI), provides a measurement of the relative spatial extents and/or thicknesses of the humic/fulvic overlayers in different soils, and, therefore, can be used in modeling various soils' behavior in sequestration pr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Environmental science & technology

دوره 36 6  شماره 

صفحات  -

تاریخ انتشار 2002